Dear Graduate Student,

For more than two decades, graduate students and their welfare have been my primary concern. As I approach the end of my tenure as Vice Chancellor and Dean, I am more convinced than ever that graduate students are the linchpin and, in many ways, the abiding spirit of the university’s life, both as a research institution and as a provider of undergraduate education.

Without your work as teaching assistants, of course, the schooling of undergraduates would become difficult. More important, you are the future faculty of tomorrow’s colleges and universities. We depend on your hard work and preparation to ensure the excellence of higher education in the century to come. You are also at the heart of the research enterprise, and not only as the workers who carry forward the initiatives of senior faculty. While that role is important, we also rely on you to bring to our research new perspectives, fresh inspiration, and the youthful energy that expands the boundaries of knowledge in the sciences and engineering, the humanities and the arts.

It has been one of my primary goals to tell the world about your crucial contributions to UCLA access to the fields you have chosen for study. This magazine is one way to spread the news, and in this issue, you’ll find an article about a new initiative—taking some of our best and brightest graduate students to Sacramento each year to make our case in person before the legislators who decide how the state will spend its money.

It has always seemed to me that the best arguments for graduate education are individual students. In this issue, you’ll meet the two who went to Sacramento—Marina Ziehn and Carlos Lazo, both of them working in the life sciences on research that may impact diseases such as multiple sclerosis and Parkinson’s disease. You’ll also hear from two scholars—Erin Broderick and Tanya Petrossian—whose work in chemistry and biochemistry earned them an opportunity to spend part of their summer vacation hanging out with Nobel Prize winners on an island resort in Germany. And finally, there are four women—Cynthia Alvarez, Lucy Arellano, Marcela Cuellar, and Chelsea Guillermo-Wann—who are part of a project designed to help universities and colleges evaluate their campus climate for diversity.

While this handful of students is featured here, I am convinced that there are hundreds of great stories around campus about men and women from diverse backgrounds pursuing many research goals. I hope you will all think of yourselves as ambassadors for graduate studies at UCLA and let the people you interact with know the value of the education that engages your energies. It wouldn’t hurt to write your elected representatives, either. Your message at the State Capitol about the importance of supporting graduate education and research.

Chancellor Honors Ground-breaking Postdoctoral Research

Students Advocate for Graduate Education in Sacramento

Doctoral Education students help campuses evaluate their campus climate for diversity.

A Nobel Opportunity

Erin Broderick and Tanya Petrossian of UCLA attended a prestigious conference that brought together scientists from physics, chemistry, and physiology and medicine.

ON THE COVER: Graduate Division Associate Dean and Professor of Psychology Carlos Grijalva hoods a student at the Doctoral Hooding Ceremony. Photograph by Todd Cheney

Claudia Mitchell-Keran
Vice Chancellor Graduate Studies
Dean, Graduate Division
The Evolution of Diversity & Education

by Jacqueline Tasch

From left to right: Education doctoral students Chelsea Guillermo-Wann, Cynthia Alvare, Sylvia Hurtado, Marcela Cuellar, and Lucy Arellano. The following scholars also contributed to the project: Luz Colin, Dr. Kimberly Griffin, Dr. Nickie Johnson-Ahorlu, Aurora Kaminura, Angela Mendoza, Chiara Pas, and Paolo Velasco.

WENTY YEARS AGO, Sylvia Hurtado received her PhD in education from UCLA, with a dissertation about the racial climate on American campuses and its impact on students’ educational outcomes. As a graduate student researcher at the Higher Education Research Institute (HERI), she had been allowed to add some questions to the national Freshman Survey and follow-up surveys implemented by HERI’s Cooperative Institutional Research Program (CIRP), and used that data in her research. Her adviser was Alexander W. Astin, then HERI director.

Today, Dr. Hurtado holds that title. She is completing work on a Ford Foundation-sponsored Diverse Learning Environments project in which she and her team developed a new survey for CIRP. Her key researchers in the project have been four women who, as she did two decades ago, received support as graduate student researchers for HERI, and like her, found an important expert and mentor in the center’s director. Lucy Arellano was first in, having come from Michigan to meet Dr. Hurtado before she applied for graduate work, and Marcela Cuellar was there not far behind. Both had chosen Dr. Hurtado as an adviser. By the time Cynthia Alvare joined the team—recruited after Dr. Hurtado saw her give a presentation with her mentor, Dr. Patricia McDonough—the work was already under way. Chelsea Guillermo-Wann came in last. When she decided to continue her studies past a master’s degree to doctoral work, Dr. Hurtado offered her a research position.

“They’re a wonderful group of people,” Chelsea says of her associates. “We have a good peer network.” As the women took turns as group leader, Lucy adds, they found that “we all have different leadership styles, and we all work differently. Seeing each other in action has been a great learning experience all around.”

What they’ve been learning about is how students at a sample of universities and colleges across the country perceive the climate for diversity on their campuses and what personal and institutional characteristics affect their perceptions, as well as retention and learning outcomes. In many ways, the new research builds on or evolves from Dr. Hurtado’s dissertation research. Whereas she focused on race and ethnicity, however, the new survey taps other kinds of differences as well: gender, religion, socioeconomic status, and sexual preference, among them. One finding of the original research was that racial tension appeared to be lower at Catholic and private nonsectarian colleges and higher at large public universities, especially those whose reputation allowed them to be highly selective in admissions. “We wanted to look at what we called broad-access institutions,” Cynthia says, those that had a high acceptance rate and a good degree of demographic diversity, rather than elite schools. Most have racially and ethnically diverse populations.

When Lucy arrived for doctoral studies, Dr. Hurtado “was thinking about this new project,” Lucy says, “and she brought me in to brainstorm with her in the beginning phases.” The researchers collected all sorts of climate surveys from U.S. campuses, identifying the kinds of questions that were being asked in the context of diversity. What they found was “a great need for a climate survey that encompassed different kinds of diversity—not just race, but gender, religion, socioeconomic status, and sexual orientation,” she says.

Cynthia was just in time to help the team study the existing questionnaires to come up with “the best possible survey examining campus climate and student success.” Each student researcher took an area of inquiry—say, sense of belonging or validation or continuous school transfer—and then the team assembled to review the results. Although some work was parsed out, overall the project has “a more collaborative and communal feel to it,” Cynthia says.

The survey that resulted from this effort was administered during the 2009-2010 academic year at 14 colleges and universities—three community colleges, five private four-year schools, and six four-year public colleges—that suited the research aim. Some of them were part of the Ford Foundation-funded study, while others asked to be included in the survey. In Fall 2009, as the survey was about to get under way, Dr. Nickie Johnson-Ahorlu, who holds a PhD from UCLA, joined the team “to make sure the logistics of launch worked.”

The Data Recognition Corporation provided online access to the survey for participating institutions and returned data to HERI.

While the survey was administered everywhere, site visits were made only to the Ford Foundation-study schools. Interviews and focus groups with both students and administrators provided qualitative data. The goal of the site visits was “to get some in-depth data about campus climate and practices and how those impacted students,” Dr. Johnson-Ahorlu says.

“Although that information is still being analyzed, the research team shared some observations.” Dr. Hurtado’s dissertation research suggested that smaller institutions might enjoy less racial tension because of their greater efforts to provide a student-centered environment, and the new data should provide a good test for that conclusion.

For example, a community college in California was the most compositionally diverse in race and ethnicity, and it has been so for most of its history. Administrators described it as “a premier community college that’s set up to help students of color in particular succeed,” Chelsea says. It has a flat leadership structure where administrators and students both mentioned that they interact regularly, and “as the school grew in size, its leaders tried hard to maintain a sense of community and accessibility for students.”

Another element of Dr. Hurtado’s dissertation looked at the impact of institutional efforts to foster diversity, and again, the new research will provide some useful data. For example, Marcela visited a private research university in Colorado with an enrollment just under 12,000. Although students are mostly upper middle class and white, the university has set out on a program that is built on the American Association of Colleges & Universities’ principles of “inclusive excellence,” Marcela says. It seeks to expand its curriculum, diversify faculty and student populations, and offer opportunities for the campus community “to engage across differences,” she explains. “Dr. Hurtado selected this site because she considers it a tipping point institution. The university has begun to implement these institutional changes to transform the campus climate for diversity and is strategically preparing to take their efforts to the next level.”

As an urban public university in the Midwest, a strategic plan, “Through the Lens of Diversity,” was compiled after surveys and meetings that attempted to tap ideas at all levels of the campus community. “It was the first time I’ve seen that,” Lucy says. The university also published a Diversity Portfolio, listing resources and services on campus.

Institutional efforts at a public four-year college in Northern California seemed not to be having the expected effect according to ancillary information from the site visits. In its physical environment, the administration had taken care to provide building names and other “signifiers that are supposed to say, ‘we welcome diversity,’” Cynthia says. The African American students, however, did not receive that message. “They still feel they don’t really belong,” Cynthia says, in large part because “they don’t see people who look...
like themselves on the faculty. In addition, Lucy says, that college is “being strategic in the type of students they let in because it affects their graduation rates” and that affects the state money they receive. It also may make it less easy for minority students to gain admission.

The mere presence of significant numbers of underrepresented minorities does not seem to foster diversity on its own, however. At a Southern California community college, the researchers found a diverse student body, but the school’s initial focus was on “offering academically what students need.” Lucy says. “Using diversity as an educational tool for them is almost a luxury. They can’t proactively use what they have in terms of structural diversity.” Budget cutbacks mean fewer course offerings with the result that students can’t complete their transfer requirements in two years, poking holes in transition to four-year colleges.

Growing up in Santa Barbara, Chelsea Guillermo-Wann started “developing concepts of white and brown” while she was still in grade school, concepts that gave her a different understanding of her white mother and brown father—his heritage both Mexican and Filipino. The town was “very stratified in terms of race and socio-economic status,” she says, and she saw that her father was treated differently than her mother—mistrusted, that is—although both had college degrees. This “led me to question issues of social stratification and racism,” she says.

Throughout her K-12 public education and later attending Westmont College, Chelsea came to see the privileges of being the second generation in her family to attend college. After graduating, she took a job with the state-funded California Student Opportunity and Access Program (Cal-SOAP) to support underrepresented students and their families in the college-going process. Her colleagues, both there and from more recent work in community colleges and student retention, encouraged her to get a master’s degree, and she was later accepted for master’s studies in UCLA’s Graduate School of Education and Information Studies. Quickly she saw that “I had so many questions that just could not be answered in a one-year program,” and one of her first-quarter professors, Sylvia Hurtado, supported her continuation for a doctoral degree.

Now beginning her third year as a PhD student, Chelsea is drawing up a dissertation proposal likely to focus on something she knows a lot about: being multiracial in the academic world. Although a growing number of students represent more than one race or ethnicity, very little research has been done about their experience, beyond issues of identity formation. There’s even some question about whether they can be considered a group, she says.

People often point to the multiracial population as evidence that the United States is entering a post-racial period in its history. To test this idea, Chelsea did a qualitative pilot study of 14 students in the Research Rookies program and discovered that “I liked the idea of research,” she says. “I love asking questions—I love learning about what people’s experiences are.”

While she was still an undergraduate at UCLA, Cynthia Alvarez had two experiences that remain central to her career choice. As a sophomore, she participated in the Research Rookies program and discovered that “I liked the idea of research,” she says. “I love asking questions—I love learning about what people’s experiences are.” Then, as a senior, she was part of Kris Gutierrez’s instruction team for an undergraduate class. “It was super hands-on,” she says, with the teaching assistants involved in everything from planning classes to grading papers. “They tried to make it as interactive as possible, not just talk, talk, talk, and have them take notes.” Now a fourth-year graduate student in education, she’s well on her way to the faculty position she’s “had my sights on” ever since.

Another undergraduate experience helped her across the bridge to the doctoral studies required to achieve her aspiration. As part

Chelsea Guillermo-Wann

The town was “very stratified in terms of race and socio-economic status,” and she saw that her father was treated differently than her mother—mistrusted, that is—although both had college degrees. This “led me to question issues of social stratification and racism,” she says.

Cynthia Alvarez

“I love asking questions—I love learning about what people’s experiences are.”
of the McNair Scholars Program, which helps first-generation college students prepare for doctoral work, Cynthia was assigned a graduate student mentor. Tracy Buenavista encouraged her to apply to UCLA’s Graduate School of Education and Information Studies and connected her to Pat McDonough, who has become her adviser. Although Cynthia applied to other top research universities, “nothing compared to what I could get at UCLA,” she says.

For her second-year research project, Cynthia conducted a pilot study that has become the basis for her dissertation. She sought out five Latinas, then high school seniors who were considering college, and got their parents to participate as well. She wanted to know “what types of decisions they were making and why.”

“The first thing that jumps out in the findings,” Cynthia says, “is the miscommunication, particularly in the implicit, nonverbal understandings between young women and their parents. One gol, for example, thought that her parents wanted her to stay close by because they didn’t have enough money.” On the other hand, the parents said, “We never told her that—we’ll support her whatever she does.” For her dissertation, Cynthia is continuing on that trail, expanding her field to include men as well as women of Latino background.

As she analyzed her data, Cynthia found “this is really cool stuff.” She was intrigued by “how many more questions arise from expanding her field to include men as well as women of Latino background.”

“The first thing that jumps out in the findings,” Cynthia says, “is the miscommunication, particularly in the implicit, nonverbal understandings between young women and their parents. One gol, for example, thought that her parents wanted her to stay close by because they didn’t have enough money.” On the other hand, the parents said, “We never told her that—we’ll support her whatever she does.” For her dissertation, Cynthia is continuing on that trail, expanding her field to include men as well as women of Latino background.

As she analyzed her data, Cynthia found “this is really cool stuff.” She was intrigued by “how many more questions arise from expanding her field to include men as well as women of Latino background.”

Marcela Cuellar

“I wanted to conduct research in my home community and bring things full circle.”

When Marcela Cuellar was growing up in Oxnard, and even when she started her own undergraduate work at Stanford University, there were no local public four-year institutions in Ventura County. Just seven years old, CSU Channel Islands now serves the local community. The campus has only 5,500 students, its growth temporarily stymied by state budget cuts. CSU Channel Islands fosters a “small school feeling,” Marcela says, “focused on placing students at the center of the college experience.”

With a student body that reflects the community’s Latino population, CSU Channel Islands meets the criterion of a Hispanic-serving institution (HSI) at least 25% of its enrollment is Latino. Although only 8% of America’s universities are HSIs, they enroll more than half of all Latino college students. Marcela’s dissertation will contribute to what is now a very small body of research on such institutions and the experiences of Latino students there. Her research question is: What are HSIs doing to promote student success?

Using data from the Higher Education Research Institute’s Freshman Survey and follow-up surveys when the same respondents were seniors, Marcela hopes to compare the experiences of Latino students at HSIs with those at schools having proportionally smaller Latino enrollments. Her goal is to see “what works in both environments in terms of promoting student success and what is unique to each.”

Marcela was a counselor with the Upward Bound program in San Diego when she decided two things: She wanted to pursue a career in education, and she wanted to be closer to home. Starting with a master’s degree in higher education leadership at the University of San Diego, she was encouraged by a faculty mentor to move along to doctoral studies. After reading about the research under way at UCLA, “I knew that if I was going to pursue a PhD, it was going to be here and nowhere else.”

When Marcela left San Diego, she says, “I wanted to conduct research in my home community and bring things full circle.” Being able to focus on institutions like CSU Channel Islands in her dissertation will fulfill that goal. Marcela hopes to complete her degree in 2011. In this job market, she’s open-minded about career choices. “As long as I’m working with students,” she says, “that’s the part I’m eager to get back to.”

Lucy Arellano

“Dealing with a new climate in both senses of the word—racial and the weather. We had to learn to walk on ice.”

When she found herself in “my quarter-life crisis,” juggling three part-time jobs with no particular direction, Lucy Arellano looked back over her 25 years and thought that her undergraduate years at the University of Michigan were probably “the most impactful event in my life.” To a young woman born and raised in East LA, the environment in Ann Arbor was “the biggest shocker,” she says, “dealing with a new climate in both senses of the word—racial and the weather. We had to learn to walk on ice.”

The question that came out of her quarter-life reflection was: How can I help others in my community do the same thing?

Returning to Ann Arbor for a master’s degree in education was her first step. Everyone there “kept talking about Sylvia Hurtado, who was doing all this work on Latino students.” Having spent a decade in Ann Arbor, Dr. Hurtado had just left for UCLA and the Higher Education Research Institute. Lucy wasn’t far behind, starting her doctoral work in 2006 with Dr. Hurtado as her adviser.

Looking back on her years in Michigan, Lucy felt that the key support for her continued studies was her connections to student groups, especially those for students of Mexican heritage. She thought she might make a dissertation project out of how student organizations affect retention for other students like herself, but quantitative data were not available. Instead, she is using data from the HERI Freshman Survey and longitudinal follow-ups to examine the factors that predict degree attainment for Latino students. Part of the study will also compare students of various national Latino backgrounds.

That done, Lucy hopes to find a tenure-track position at a college or university. Landing a job at a research one university “at the beginning of a career would be pretty awesome,” she acknowledges, but her main goal is to interact closely with students. In Fall 2009, she was a teaching assistant for a graduate level course, and as she watched the professor work, she sat back and thought “I could totally see myself doing that.”
Students Advocate for Graduate Education in Sacramento

Graduate students are a key part of the research team, working closely with the faculty in identifying sustainable sources of energy, reducing greenhouse gas emissions, fighting terrorism, protecting against natural disasters, advancing biomedical knowledge, and improving public health. UC also advances the arts and humanities, turning out writers, poets, filmmakers, and leaders in the performing arts.

On May 12, 2010, each UC campus sent a Graduate Dean, two graduate students, and a representative of their respective State Government Relations office to meet members of the State Senate and Assembly to advocate for graduate education. In addition, graduate student representatives presented a poster session on their research for the legislators in the Governor’s Council Room. UCLA Associate Dean Carlos Grijalva, was accompanied by Graduate Division-sponsored program to recruit more underrepresented minorities to doctoral studies. They have been actively involved in outreach efforts and community service throughout their graduate careers. Carlos Lazo, who recently became a Graduate Ambassador for the Graduate Division in a new initiative to assist the university and departments in promoting a more diverse campus, enjoyed meeting legislators and found out that he could have a Graduate Dean, two graduate students, and a representative of their respective State Government Relations office and graduate students Carlos Lazo from the Department of Neuroscience and Marina Ziehn from the Neuroscience Interdepartmental Program. The students are both members of STEMM-PLEDGE, a Graduate Division-sponsored program to recruit more underrepresented minorities to doctoral studies. They have been actively involved in outreach efforts and community service throughout their graduate careers.

Carlos Lazo, who recently became a Graduate Ambassador for the Graduate Division in a new initiative to assist the university and departments in promoting a more diverse campus, enjoyed meeting legislators and found out that he could have a Graduate Dean, two graduate students, and a representative of their respective State Government Relations office and graduate students Carlos Lazo from the Department of Neuroscience and Marina Ziehn from the Neuroscience Interdepartmental Program. The students are both members of STEMM-PLEDGE, a Graduate Division-sponsored program to recruit more underrepresented minorities to doctoral studies. They have been actively involved in outreach efforts and community service throughout their graduate careers. Carlos Lazo, who recently became a Graduate Ambassador for the Graduate Division in a new initiative to assist the university and departments in promoting a more diverse campus, enjoyed meeting legislators and found out that he could have a Graduate Dean, two graduate students, and a representative of their respective State Government Relations office and graduate students Carlos Lazo from the Department of Neuroscience and Marina Ziehn from the Neuroscience Interdepartmental Program. The students are both members of STEMM-PLEDGE, a Graduate Division-sponsored program to recruit more underrepresented minorities to doctoral studies. They have been actively involved in outreach efforts and community service throughout their graduate careers.

Carlos Lazo from the Department of Neuroscience Interdepartmental Program student Marina Ziehn in front of a poster describing her research at Graduate Research Day in Sacramento.

Finding Treatments for Parkinson’s Disease

Carlos Lazo spent the year after completing his undergraduate degree as a tutor for sea slugs in David Glanzman’s UCLA learning and memory laboratory. “In science, what you try to do is answer complicated questions using very simple systems,” Carlos says. “A sea slug is great because it has few neurons.”

Sea slugs breathe by extending a siphon that pulls in water and extracts its oxygen. “Whenever they feel something brushing against it, they typically bring it back to their body,” sensing danger, Carlos says. “We can train them not to react to touch” by using the same kind of touch repeatedly and memory laboratory. “In science, what you try to do is answer complicated questions using very simple systems,” Carlos says. “A sea slug is great because it has few neurons.”

Sea slugs breathe by extending a siphon that pulls in water and extracts its oxygen. “Whenever they feel something brushing against it, they typically bring it back to their body,” sensing danger, Carlos says. “We can train them not to react to touch” by using the same kind of touch repeatedly and memory laboratory. “In science, what you try to do is answer complicated questions using very simple systems,” Carlos says. “A sea slug is great because it has few neurons.”

Sea slugs breathe by extending a siphon that pulls in water and extracts its oxygen. “Whenever they feel something brushing against it, they typically bring it back to their body,” sensing danger, Carlos says. “We can train them not to react to touch” by using the same kind of touch repeatedly and memory laboratory. “In science, what you try to do is answer complicated questions using very simple systems,” Carlos says. “A sea slug is great because it has few neurons.”

Sea slugs breathe by extending a siphon that pulls in water and extracts its oxygen. “Whenever they feel something brushing against it, they typically bring it back to their body,” sensing danger, Carlos says. “We can train them not to react to touch” by using the same kind of touch repeatedly and memory laboratory. “In science, what you try to do is answer complicated questions using very simple systems,” Carlos says. “A sea slug is great because it has few neurons.”

Sea slugs breathe by extending a siphon that pulls in water and extracts its oxygen. “Whenever they feel something brushing against it, they typically bring it back to their body,” sensing danger, Carlos says. “We can train them not to react to touch” by using the same kind of touch repeatedly and memory laboratory. “In science, what you try to do is answer complicated questions using very simple systems,” Carlos says. “A sea slug is great because it has few neurons.”

Sea slugs breathe by extending a siphon that pulls in water and extracts its oxygen. “Whenever they feel something brushing against it, they typically bring it back to their body,” sensing danger, Carlos says. “We can train them not to react to touch” by using the same kind of touch repeatedly and memory laboratory. “In science, what you try to do is answer complicated questions using very simple systems,” Carlos says. “A sea slug is great because it has few neurons.”

Sea slugs breathe by extending a siphon that pulls in water and extracts its oxygen. “Whenever they feel something brushing against it, they typically bring it back to their body,” sensing danger, Carlos says. “We can train them not to react to touch” by using the same kind of touch repeatedly and memory laboratory. “In science, what you try to do is answer complicated questions using very simple systems,” Carlos says. “A sea slug is great because it has few neurons.”

Sea slugs breathe by extending a siphon that pulls in water and extracts its oxygen. “Whenever they feel something brushing against it, they typically bring it back to their body,” sensing danger, Carlos says. “We can train them not to react to touch” by using the same kind of touch repeatedly and memory laboratory. “In science, what you try to do is answer complicated questions using very simple systems,” Carlos says. “A sea slug is great because it has few neurons.”
Using the Body’s Own Hormones to Combat MS

Marina Ziehn is the first scientist to show that multiple sclerosis-like disease in mice affects the part of the brain called the hippocampus, producing spatial memory symptoms that are characteristic of the disease. In addition, she’s found that treatment with sex hormones, estrogen and androgens, is neuroprotective, lessening the degenerative effects of the disease.

Coming to UCLA for doctoral studies in 2005, Marina brought with her three interests: hormones in the brain, learning and memory, and disease. She chose UCLA because of the range of work under way here in the neurosciences. “I had a chance to integrate myself into several different neuroscience communities, so I could become a well-rounded scientist,” she says, “and I could think differently about these questions that I had.”

Marina started by using an experimental model of multiple sclerosis in mice, inducing the autoimmune disease and then studying its impact. In the key finding, Marina decided to try treating her sick mice with sex hormones—and it worked. “The nice thing about this outcome,” she says, “is that when you use endogenous hormones, it’s easier to apply results to humans. You’re not using strange drugs that would require years of testing.”

Based on the fact that women with multiple sclerosis improve during the “hormonal surges” of pregnancy, as well as other evidence, Marina decided to try treating her sick mice with sex hormones—and it worked. “The nice thing about this outcome,” she says, “is that when you use endogenous hormones, it’s easier to apply results to humans. You’re not using strange drugs that would require years of testing.”

And although Alzheimer’s disease has a different mechanism—it’s caused by a buildup of proteins in the brain, rather than autoimmune attacks on the myelin around neurons—it is also characterized by damage to the hippocampus. Hormone therapies may turn out to be successful treatments for both diseases.

Given her scientific achievements, it’s worth noting that Marina may be just as proud of her mentoring and teaching activities. Two of the undergraduates she mentored in her lab are pursuing graduate degrees; one is pursuing an MD/PhD and the other a PhD. “I feel like I’ve succeeded,” she says. “I’ve gotten more people to pursue higher education in science.”

Although Marina was born in Texas, she spent her early childhood in Mexico, where both of her parents had gotten college degrees before they emigrated. Their experiences taught her “how to work hard through hardship,” Marina says. Her mother is a particular role model. Having given up doctoral studies when she became pregnant, her mother nevertheless went on to become head of research and development for Mission Foods.

Perhaps because she was a scientist herself, Marina’s mother was encouraging when her daughter started her own experiments. “When I was 5 or 6, I loved being outside,” she says, “and the coolest thing for me was to collect bugs and plants in the garden. I was always curious about how living things worked, so I would open them up to find out.”

Her childhood bug collection grew into an interest in math and science, and she started her undergraduate work at UC Santa Barbara as a pre-med biology major. “Somewhere along the way I took a course in psychology and neuroscience,” she says, “and I quickly decided that the brain is ‘way cooler than any other organ.’” She graduated as a biopsychology major in 2005 and started graduate work the same year.

Two years later, she was married, and two years after that, well into her doctoral work, she had a son. Her parents and her husband provided the support system, and along with her own determination, that made it possible to move forward with hardly an interruption. She was at work in the lab the day before she went into labor. “It’s challenging, but I tend to work better when I have a lot on my plate,” she says. “I know what I want out of a career, and I know what I want out of a family. If you want something, you make it happen.”

"We must make sure that your generation of scientists will also have the freedom to take advantage of scientific chances. We must also make sure that you have the opportunity to develop your findings in ways that improve human welfare. But, above all, you must enjoy doing what you do. For without that you will never be able to look back, as I can, at 60 years of enjoyable science.”

- Oliver Smithies, Nobel Prize in Medicine, 2007

A Nobel Opportunity

As June turned into July this summer, the tiny island of Lindau in Germany played host to 59 Nobel laureates and 670 notable young scientists from around the world, among them Erin Broderick and Tanya Peterson of UCLA. It was the 60th such gathering and only the third that brought together scientists from physics, chemistry, and physiology or medicine.

The goal is to provide a globally recognized forum for the transfer of knowledge between generations of scientists. The highlight of the five-day conference is a series of lectures by the laureates, both to the whole group and to smaller audiences that offer a more intimate venue with more opportunity for questions and discussions with students. To attend this prestigious event, students pass through a series of screens that test to their expertise. Nominated by the Department of Chemistry and Biochemistry at UCLA, Tanya was one of sixteen students across the United States selected to represent the National Institute of Health. Erin was among the 21 students representing the U.S. Department of Energy. Both nominations were also approved by the Lindau committee.

Besides the lectures and seminars, lunches and dinners offer opportunities for students to interact with both their peers and eminent scientists. Tanya, for example, found herself seated for dinner next to Dr. Werner Arber, who won the 1978 Nobel Prize in Physiology or Medicine for his work on restriction enzymes.

A panel discussion during the dinner addressed the question of communicating science to the public. Turning to his youthful companions, Dr. Arber described the difficulties of communicating ideas based on scientific notions. When his then-10-year-old daughter wanted to know what his Nobel prize was for, he told her a story in which the cell is a king and enzymes are servants. “The restriction enzyme is the servant with scissors who cuts up the foreign DNA,” she said; “the restriction enzyme is the servant with scissors who cuts up the foreign DNA.”

Both Tanya and Erin were impressed by Oliver Smithies, who won the Nobel Prize in Physiology or Medicine for his work on restriction enzymes.

Department of Energy. Both nominations were also approved by the Lindau committee. Besides the lectures and seminars, lunches and dinners offer opportunities for students to interact with both their peers and eminent scientists. Tanya, for example, found herself seated for dinner next to Dr. Werner Arber, who won the 1978 Nobel Prize in Physiology or Medicine for his work on restriction enzymes. A panel discussion during the dinner addressed the question of communicating science to the public. Turning to his youthful companions, Dr. Arber described the difficulties of communicating ideas based on scientific notions. When his then-10-year-old daughter wanted to know what his Nobel prize was for, he told her a story in which the cell is a king and enzymes are servants. “The restriction enzyme is the servant with scissors who cuts up the foreign DNA,” she said; “the restriction enzyme is the servant with scissors who cuts up the foreign DNA.” Both Tanya and Erin were impressed by Oliver Smithies, who won the Nobel Prize in Physiology or Medicine for his work on restriction enzymes.

Department of Energy. Both nominations were also approved by the Lindau committee. Besides the lectures and seminars, lunches and dinners offer opportunities for students to interact with both their peers and eminent scientists. Tanya, for example, found herself seated for dinner next to Dr. Werner Arber, who won the 1978 Nobel Prize in Physiology or Medicine for his work on restriction enzymes. A panel discussion during the dinner addressed the question of communicating science to the public. Turning to his youthful companions, Dr. Arber described the difficulties of communicating ideas based on scientific notions. When his then-10-year-old daughter wanted to know what his Nobel prize was for, he told her a story in which the cell is a king and enzymes are servants. “The restriction enzyme is the servant with scissors who cuts up the foreign DNA,” she said; “the restriction enzyme is the servant with scissors who cuts up the foreign DNA.”

Both Tanya and Erin were impressed by Oliver Smithies, who won the Nobel Prize in Physiology or Medicine for his work on restriction enzymes.
Tanya Petrossian

“It’s important to start celebrating scientists.”

A S A NATIONALLY RANKED swimmer at Mission Viejo High School, Tanya Petrossian found her interest in math and science turning to questions of biology: Why did she feel different if she took too many breaths during a race? How did changing the angle of her elbow help move her through the water more quickly?

She was planning to attend UCLA on a swim scholarship when a devastating car accident literally knocked her off her feet for the better part of a year. She was 16. “My entire life had been swimming,” she said, “and, not surprisingly, for the development of various applications.”

Although the chemistry community at this year’s meeting was “oriented toward biological applications”—and not the chemistry that is her own work, Erin said, “still it was fascinating to learn.” And the most powerful lesson she took away had to do with the funders rather than their findings. All of the Nobel laureates “still really enjoy what they’re doing,” she says. “They’re still very excited about what they do, and they still want to talk science with us.”

Information for this story was taken from www.lindau-nobel.org, www.nobelprize.org, and Tanya’s blog at newsroom.ucla.edu/portal/ucla/lindau-blog.aspx.

Atomic Obsession

ERIN BRODERICK is attracted to atoms and to difficult projects. The first encounter was in seventh or eighth grade, when she had to create a model of an atom for a science assignment. There are dozens of simpler atoms, but Erin passed them all by for rubidium. So reactive that it is never found outside of a compound, rubidium has 37 protons, 37 electrons, and 48 neutrons. That’s a whole lot of poms from the art store, which is what Erin used to compose her model. And in the process, she learned that atoms were “the part of science that I really liked,” she says.

Fast-forward a decade or two, and you’ll find her in the chemistry and biochemistry labs at UCLA, where her doctoral studies have brought her into a close relationship with other complicated atoms. For one, there’s cerium, a rare earth element that’s also usually found in humans or in her compounds. Cerium has 58 protons, 58 electrons, and 82 neutrons. A form of cerium that’s missing four electrons is the one that has her totally intrigued, and it’s the most unstable—and most challenging to work with—all of them.

Since her first year at UCLA, Erin has been looking for a way to bind cerium twice to the same oxygen atom, something “that’s never been seen before,” she says. “It should work, but it’s never been done.” Her advisor, Paula Dianes, occasionally reminds her that she could try something easier, but “I really like cerium, so I keep trying,” Erin says, acknowledging that “it’s been a long road, and nothing might come out of it.”

In the process, however, she synthesized a cerium(V) complex that is capable of catalyzing the formation of biodegradable polymers. That accomplishment has made her one of the first chemists to perform this reaction with cerium(V).

Erin’s work is supported by a Department of Energy grant because of its potential “green” applications. The agency is particularly interested in Erin’s work with depleted uranium, which might show how to take the by-product of nuclear reactors “and make something useful out of it,” she says. Using uranium to break apart two parts of a compound and attach them to a third molecule leaves no waste—all of the materials used end up in the resulting product. “If we can make a cerium double bond to an oxygen complex, it might have some interesting uses, too,” Erin says. “I haven’t got there yet but along the way, I’ve found some interesting things.”

Erin Broderick

in her lab (above) and in Lindau, Germany (below).

RESPONSE THEORY

A new device for treating brain aneurysms, work that has attracted a $1 million award from the National Institutes of Health Challenge Grant program. His device has the potential to improve treatment of about half of the 30,000 aneurysms treated each year. During his postdoctoral years, Dr. Chun improved a micro-stent he developed as a graduate student, devising a surface treatment that makes clotting less likely in very small blood vessels. He was nominated by Gregory Carmein, Professor of Mechanical and Aerospace Engineering.

KEISUKE GODA

Keisuke Goda has invented the world’s fastest and most sensitive continuous-running camera, a device with potential applications in medicine. Its extraordinary speed—it takes 6 million pictures in a single second—is complemented by its ability to work in low-light situations, making it ideal for imaging biological samples like blood flow. Dr. Goda’s Serial Time-Encoded Amplified Microscopy (STEAM) process is qualitatively different from other cameras because it amplifies the image in the optical domain after the image has been registered. He was nominated by Bahram Jalali, Professor of Electrical Engineering.

YOUNGJAE CHUN

Youngjae Chun has played a leading role in the development of an ultrathin nickel-titanium device for treating brain aneurysms, work that has attracted a $1 million award from the National Institutes of Health Challenge Grant program. His device has the potential to improve treatment of about half of the 30,000 aneurysms treated each year. During his postdoctoral years, Dr. Chun improved a micro-stent he developed as a graduate student, devising a surface treatment that makes clotting less likely in very small blood vessels. He was nominated by Gregory Carmein, Professor of Mechanical and Aerospace Engineering.

LAURA B. ALLEN

Laura B. Allen has developed and tested the first treatment protocol for adolescents suffering from both chronic pain and related emotional disorders, such as anxiety or depression. She also played a leading role in creating and evaluating a peer mentorship program, in which youngsters who have experienced chronic pain work with similar others. Dr. Allen received a Ruth L. Kirschstein National Research Service Award to investigate emotional regulation and pain responses in the context of ongoing studies in the UCLA’s Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area. She was nominated by Lonnie Zeltzer, director of the UCLA Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area. She was nominated by Lonnie Zeltzer, director of the UCLA Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area. She was nominated by Lonnie Zeltzer, director of the UCLA Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area.

ARTHUR E. BRAGG

Arthur E. Bragg designed the first experimental test of the Linear Response theory, a cornerstone of nonequilibrium statistical mechanics, which underlies key theories of chemical reactivity in solution. His work advances the understanding of simple electron-transfer reactions and dynamic solvation. Dr. Bragg found that Linear Response theory did not describe the solvation of the neutral sodium atom in liquid THF, a discovery that was published in Science and drew widespread attention in chemistry and chemical physics. He was nominated by Benjamin J. Schwartz, Professor of Physical Chemistry.

ELEANORE SULLIVAN

Elaine Sullivan oversaw the creation of the ancient Egyptian Temple of Amun-Ra at Karnak as a digital model at UCLA’s Experimental Technology Center. The virtual reality visualization includes more than 50 structures from 30 distinct historical periods and allows scholars to “see” features of the temple that are no longer visible in bricks and mortar. Dr. Sullivan is helping develop programs that teach humanities undergraduates how to use new spatial technologies, like satellite imagery and Geographic Information Systems, in their research. She was nominated by Wihid Eladawy, Professor of Egyptian Archaeology.

The Winners of the Chancellor’s Award for Postdoctoral Research, 2010

FROM LEFT TO RIGHT: Keisuke Goda, Arthur E. Bragg, Laura B. Allen, Chancellor Gene D. Block, Vice Chancellor Graduate Studies, and Dean, Graduate Division Claudia Mitchell-Kerman, Elaine Sullivan, Francisco Javier Sanchez, and Youngjae Chun

CHANCELLOR HONORS GROUND-BREAKING POSTDOCTORAL RESEARCH

These groundbreaking research projects earned six postdoctoral fellows the Chancellor’s Award for Postdoctoral Research, an honor that carries a $4,000 prize.

This year, 31 postdoctoral fellows were nominated, mostly in the biological and physical sciences, the David Geffen School of Medicine, and the Henry Samueli School of Engineering and Applied Science. However, students were also nominated from Near Eastern Languages and Cultures and from the Department of Spanish and Portuguese. Brief descriptions of the winners and their work follow.

Laura B. Allen has developed and tested the first treatment protocol for adolescents suffering from both chronic pain and related emotional disorders, such as anxiety or depression. She also played a leading role in creating and evaluating a peer mentorship program, in which youngsters who have experienced chronic pain work with similar others. Dr. Allen received a Ruth L. Kirschstein National Research Service Award to investigate emotional regulation and pain responses in the context of ongoing studies in the UCLA’s Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area.

Youngjae Chun has played a leading role in the development of an ultrathin nickel-titanium device for treating brain aneurysms, work that has attracted a $1 million award from the National Institutes of Health Challenge Grant program. His device has the potential to improve treatment of about half of the 30,000 aneurysms treated each year. During his postdoctoral years, Dr. Chun improved a micro-stent he developed as a graduate student, devising a surface treatment that makes clotting less likely in very small blood vessels.

Keisuke Goda has invented the world’s fastest and most sensitive continuous-running camera, a device with potential applications in medicine. Its extraordinary speed—it takes 6 million pictures in a single second—is complemented by its ability to work in low-light situations, making it ideal for imaging biological samples like blood flow.

Arthur E. Bragg designed the first experimental test of the Linear Response theory, a cornerstone of nonequilibrium statistical mechanics, which underlies key theories of chemical reactivity in solution. His work advances the understanding of simple electron-transfer reactions and dynamic solvation.

Dr. Bragg found that Linear Response theory did not describe the solvation of the neutral sodium atom in liquid THF, a discovery that was published in Science and drew widespread attention in chemistry and chemical physics.

Elaine Sullivan oversaw the creation of the ancient Egyptian Temple of Amun-Ra at Karnak as a digital model at UCLA’s Experimental Technology Center. The virtual reality visualization includes more than 50 structures from 30 distinct historical periods and allows scholars to “see” features of the temple that are no longer visible in bricks and mortar. Dr. Sullivan is helping develop programs that teach humanities undergraduates how to use new spatial technologies, like satellite imagery and Geographic Information Systems, in their research.

Francisco Javier Sanchez is conducting research on the genetic differences associated with transgender and gay identities, in scholarly work aimed at bridging the gap between science and practice for physicians and psychologists. Working with male-to-female transsexuals, he found unique variations in the estrogen receptor gene, a result that drew widespread attention.

However, students were also nominated from Near Eastern Languages and Cultures and from the Department of Spanish and Portuguese. Brief descriptions of the winners and their work follow.

Laura B. Allen has developed and tested the first treatment protocol for adolescents suffering from both chronic pain and related emotional disorders, such as anxiety or depression. She also played a leading role in creating and evaluating a peer mentorship program, in which youngsters who have experienced chronic pain work with similar others. Dr. Allen received a Ruth L. Kirschstein National Research Service Award to investigate emotional regulation and pain responses in the context of ongoing studies in the UCLA’s Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area. She was nominated by Lonnie Zeltzer, director of the UCLA Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area. She was nominated by Lonnie Zeltzer, director of the UCLA Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area. She was nominated by Lonnie Zeltzer, director of the UCLA Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area. She was nominated by Lonnie Zeltzer, director of the UCLA Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area.

Youngjae Chun has played a leading role in the development of an ultrathin nickel-titanium device for treating brain aneurysms, work that has attracted a $1 million award from the National Institutes of Health Challenge Grant program. His device has the potential to improve treatment of about half of the 30,000 aneurysms treated each year. During his postdoctoral years, Dr. Chun improved a micro-stent he developed as a graduate student, devising a surface treatment that makes clotting less likely in very small blood vessels.

Keisuke Goda has invented the world’s fastest and most sensitive continuous-running camera, a device with potential applications in medicine. Its extraordinary speed—it takes 6 million pictures in a single second—is complemented by its ability to work in low-light situations, making it ideal for imaging biological samples like blood flow.

Dr. Goda’s Serial Time-Encoded Amplified Microscopy (STEAM) process is qualitatively different from other cameras because it amplifies the image in the optical domain after the image has been registered. He was nominated by Bahram Jalali, Professor of Electrical Engineering.

Laura B. Allen has developed and tested the first treatment protocol for adolescents suffering from both chronic pain and related emotional disorders, such as anxiety or depression. She also played a leading role in creating and evaluating a peer mentorship program, in which youngsters who have experienced chronic pain work with similar others. Dr. Allen received a Ruth L. Kirschstein National Research Service Award to investigate emotional regulation and pain responses in the context of ongoing studies in the UCLA’s Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area. She was nominated by Lonnie Zeltzer, director of the UCLA Pediatric Pain Program, and she collaborates on studies of genetic relationships in this area.

Youngjae Chun has played a leading role in the development of an ultrathin nickel-titanium device for treating brain aneurysms, work that has attracted a $1 million award from the National Institutes of Health Challenge Grant program. His device has the potential to improve treatment of about half of the 30,000 aneurysms treated each year. During his postdoctoral years, Dr. Chun improved a micro-stent he developed as a graduate student, devising a surface treatment that makes clotting less likely in very small blood vessels.

Keisuke Goda has invented the world’s fastest and most sensitive continuous-running camera, a device with potential applications in medicine. Its extraordinary speed—it takes 6 million pictures in a single second—is complemented by its ability to work in low-light situations, making it ideal for imaging biological samples like blood flow.

Dr. Goda’s Serial Time-Encoded Amplified Microscopy (STEAM) process is qualitatively different from other cameras because it amplifies the image in the optical domain after the image has been registered. He was nominated by Bahram Jalali, Professor of Electrical Engineering.
On the cool spring evening of June 10, this year’s 752 recipients of the doctoral degree were honored at the Doctoral Commencement Hooding Ceremony in Royce Hall. Each year UCLA’s new doctorates are welcomed into the academy at this colorful and traditional ceremony.

Graduates, faculty and members of the official party came together to enjoy light refreshments on the terrace off the West Lobby of Royce Hall, while families and friends took seats in the auditorium. A majestic trumpet fanfare by the UCLA Wind Ensemble Brass signaled the beginning of the formal procession of faculty and graduates, faculty clad in the varied and colorful academic regalia of their individual doctoral alma maters, graduates in robes and tasseled caps and bedecked with the occasional orchid lei or other personal ornament. The magnificent organ of Royce Hall was played by University Organist, Christoph Bull.

Chancellor Gene Block gave the call to order and welcomed all attendees. The Chancellor asked for a moment of silence to honor the passing of former UCLA Coach John Wooden in the previous week. He also acknowledged Dean Claudia Mitchell-Kernan’s “20 years of exemplary leadership” in light of her impending retirement from the Graduate Division. The Chancellor congratulated the graduates and recognized the families who supported them during their years of graduate study. He singled out Afroditi Davos who received a Ph.D. in Art History and was hooded by her father, Climis Davos, Professor Emeritus of Public Health, and Ilana Johnson, who received a Ph.D. in Anthropology and was hooded by her father, Professor Allen Johnson of Anthropology. Speaking of the heritage of doctoral hooding, Chancellor Block noted that “The academic regalia we wear tonight follow traditions reaching back to the earliest universities in medieval times.” In concluding remarks, the Chancellor spoke of the future while honoring each person receiving a degree: “As graduates, you are an important part of our future. At UCLA, you have embodied the mission of the University of California through your teaching, research and service. You built upon the discoveries made by previous scholars – pursuing research that will improve the quality of life and enrich our society.”

Vice Chancellor and Graduate Dean Claudia Mitchell-Kernan acknowledged that this was her last hooding ceremony after 20 years as Dean and the awarding of 14,000 doctoral degrees during her administration. She sadly noted that violence, human suffering, racial strife, and economic instability continue to dominate the headlines. In particular, Dr. Mitchell-Kernan deplored the “engorging and nationwide disinvestment in public education,” resulting in expectations that individuals “should be expected to pay an increasingly large part of the cost.” She noted that increasingly prisons are funded more heavily than education by state governments. At the same time for-profit institutions have made large gains at the cost of the taxpayer: “From 1987 to 2000, the industry got between $2 and $4 billion dollars in government funds annually,” benefiting wealthy investors “for a five-year average return on equity of 33.5%, twice the S&P industry average.” The Vice Chancellor noted that students in these institutions take on heavy debt, have a high drop-out rate, and fair poorly in the employment market. Dean Mitchell-Kernan challenged the graduates to take heed from Margaret Mead who valued “the social role that education should serve in helping us to fully develop our human identity.” She asked them to look at this difficult situation as “one that you bear a responsibility for resolving not only in the values you uphold in your personal lives but in the standards you apply to government and business in the years ahead. We must all demand better, and the best education for the broadest possible number should be the root of that demand.”

Each student was hooded by a dean from an official party of deans from the Graduate Division and UCLA’s schools and colleges, personally congratulated by Chancellor Block, and presented with a diploma by Vice Chancellor Mitchell-Kernan. Each hooding was accompanied by applause, camera flashes, and expressions of pride and joy from family and friends throughout the auditorium.

Following a final salute from Joseph Rudnick, Dean of Physical Sciences, graduates, faculty, and guests enjoyed a mid-evening champagne reception in Royce Quad. In addition to a capacity crowd of graduates and their families and friends, more than 100 faculty attended the ceremony and reception.
On September 22, 2010, the doors of the Faculty Center opened to welcome over 2,200 incoming graduate students. Vice Chancellor of Graduate Studies and Dean of the Graduate Division Claudia Mitchell-Kernan spoke to the students about their incoming class. “You range in age from 18 to 57; you are almost evenly divided between men and women, and 28% of you have come from countries around the world to pursue your studies. Look around you and you can see the diversity which we celebrate and too often violence.”

Photography by Reed Hutchinson

Welcome Reception

Congratulations
2010-2011 Fellowship Recipients

RECRUITMENT FELLOWSHIPS
Chancellor’s Prize
Ahi, Carr...History
Barrett, Megan....Ecology & Evolutionary Bio
Burkhart, Nicholas...Geography
Chen, Jun...Computer Science
Campbell, Karen...Literature
Car, Joshua........UCLA ACCESS Program
Ccolla, Paul........Spanish & Portuguese
Che, Angel......Psychology
Cisneros, Ryan....Mechanical & Aerospace Eng
Cook, Michelle....Biology
Daloza, Jose....Biology
De Carlo, Nicholas...German Studies
Dutch, Janne...Psychology
Duhalde, Maria....Chemistry & Biochemistry
Faulkner, Steven...Indian-European Studies
Fleming, Chelsey...Anthropology
Fournier, Jennifer...Psychology
Fuchs, Noah...Statistics
Gaddy, Ivan......Physics & Astronomy
Gerritzen, Jordan...Biology
Gonzalez, Bruna...Chemistry
Green, Benjamin....Philosophy
Grisham, Allen...Electronic Engineering
Harris, Robert John...Biomedical Physics
Heckman, Alex...History
Hemstreet, Farad...Computer Science
Huang, Charyen...Health Services
Ibe, Sy-Chyuan...Electronic Engineering
King, Meryl......Near Eastern Lang & Cultures
Koo, Dennis....Economics
Lacayo, Michael...Political Science
Lauter, John........Art History
Lee, Lewis........Biomedical Sciences
Mickel, Nicholas...Art History
Mickle, Adam...Chemistry & Biochemistry
McKeeley, Ian....Mechanical & Aerospace Eng
McNamara, Amelia...Statistics
Mehlman, Gabriel...English
Meun, Lisa........Neuroscience
Muehle, Anne...French & Francophone Studies
Mullins, Sarah......Philosophy
Perez, Adriana...Comparative Literature
Robinson, Larry...Ethnomusicology
Rock, Patrick...Psychology
Saito, Daisuke...Computer Science
Schoenholtz, Joshua...Physics & Astronomy
Schwartz, Nathan...Anthropology
Singh, Ganjesh...Women’s Studies
Smit, Romano...Economics
Stremfel, Jacob....Material Science & Engineering
Streeter, Ryan...Chemistry & Biochemistry
Su, Pui Hang...Sociology
Sun, Yilan......Electrical Engineering
Tinkofo, Nita....UCLA ACCESS Program
Vall, Anais Jeanette...Sociology
Van Horn, Christane...UCLA ACCESS Program
Vasquez, Juan...Classics

Walsh, Sarah......History
Wills, William....Asian Studies
Williams, Alexander....World Arts & Cultures
Zhang, Yinchuang...Asian Languages & Cultures

Eugene Costa-Robles
Alexander, Deya....Neuroscience
Alton, Dominic.......Ecology & Evolutionary Biology
Allen, Vincent......Psychology
Alvarez, Miguel...Mechanical & Aerospace Eng
Arias, Jorge......History
Armijo, Amanda...Molecular & Medical Pharma
Biggs, Brian....Sociology
Boo, Gayle.....UCLA ACCESS Program
Bower, Daniel....Psychology
Breda, Jordan...Electrical Engineering
Brett, David.....Economics
Camacho, Darwin...Psychology
Carrillo, Marcus...Psychology
Centeno, Julie...Molecular Toxicology
Cerda, Wilfredo...Computer Science
Cerda, Wilfredo...UCLA ACCESS Program
Chen, Mingleo...Psychology
Chernis, Katrina...Sociology
Chow, Arthur...Archeology
Coombs, Jorge...UCLA ACCESS Program
Corry, Elizabeth...UCLA ACCESS Program
Erickson, Jono...Information Studies
Falconer, Oleksiy...Epidemiology
Fazio, Natalia...Psychology
Garcia, Patricia...Information Studies
Garic, Michael...Psychology
Giggy, Lindsey...Film & Television
Gomez, Andrew...History
Hagen, Caleb...UCLA ACCESS Program
Halvorson, Courtney...Psychology
Haugen, Abel....Ecology & Evolutionary Biology
Herrero, Severo...Chemistry & Biochemistry
Johnson, Wendy...Nursing
Ko, Michael......Mathematics
Lasky, Nick...Archaeology
Lane, Nicole...Anthropology
Lassvik, Marc...Sociology
Martinez, Yvette...Theater
McDonald, Whitney...Neuroscience
Merritt, Rebekah...Nursing
Mora, Jordan......Social Welfare
Munn, Nicole...Ecology & Evolutionary Biology
Ng, My...Asian Languages & Cultures
Nicoloff, Barbara....History
Obiang, Juan...Spanish & Portuguese
Padilla-Franco, Doreen...Community Health Sciences
Park, Dukmin.........Psychology
Patton, Laura.....Mechanical & Aerospace Eng
Petterson, Tanya...Psychology

Perez, Wendy...Education
Pierzchalska, Natalia...Slavic Languages & Literatures
Podolny, Michael...Economics
Pope, David...Economics
Quintero, Patricia...Education
Ramos-Higgins, Frederick...Asian Languages & Cultures
Richards-Colburn, Whitney...Sociology
Riglar, Diana.....UCLA ACCESS Program
Robinson, Larry....Ethnomusicology
Rodriguez-Barajas, Vanessa...UCLA ACCESS Program
Rodriguez-Moles, Naime...UCLA ACCESS Program
Rubinstein, Daniel....Comparative Literature
Salgado, Alexandra...Sociology
Serrano, Fernando Jr...Biological Sciences
Shaw, Janice...Electrical Engineering
Silva Barcelos, Nancy...Nursology
Singh, Gurangistan K....Women’s Studies
Skinner, Jif...Nursing
Slaw, Lisa....Theater
Spyromilio, Melissa...Civil Engineering
Sui, Pia Hang...Sociology
Valencia, Yaimid...Biomedical Physics
Valli, Ana migrate to Sociology
Vazquez, Iona S...Psychology
Villamarin, Diego...Computer Science
Villegas, Bredon...Biomedical Physics
Welsh, Sarah Marie...History
Willems, Lindsey...Psychology
Williams, Alexander....World Arts & Cultures

Graduate Opportunity Fellowship Program (GOFP)
Aikins, Paul...African Studies
Allen, Anuwar...African Studies
Ainsa, Joseph...Asian American Studies
Almada, Belinda...Cynthia
Amon, Oluwade...Nursing
August, Melanie...Management
Baron, Agustin Jr...Civil Engineering
Barriga, Emily...World Arts & Cultures
Bergman, Tom...African American Studies
Browne, Kenneth...Mechanical & Aerospace Eng
Boyd, Katrina...Afro-American Studies
Cai, Andrew...East Asian Studies
Carillo, Carla...Nursing
Carroll, Lauren...Applied Languages
Castro, Alicia...Public Policy
Chalfin, Jacobse...Nursing
Chang, Anmoo...Asian American Studies
Daddah, Feryana...Afro-American Studies
Davies, Jemima...Moving Image Archive Studies
Deubel, Peter...American Indian Studies
Dill, Antoine....Afro American Studies
Dill, Megan...Social Work
Diaz, Ciro...Psychology
Dubois, Peter...American Indian Studies
Duckles, Mark...Afro-American Studies
Duda, Crystal...Sociology
Egoscue, Theo...Sociology
Flaherty, William...Urban Planning
Flicker, Beca...Computer Science
Foote, Lopita...Urban Planning

Live music by 1010 UCLA Spring Sing “best band” winners thoroughhustle.

Abstract: Luminal cells are believed to be the cells of origin for human prostate cancer because the disease is characterized by luminal cell expansion and the absence of basal cells. Yet functional studies addressing the origin of human prostate cancer have not previously been reported because of a lack of reliable in vitro human models. Here we show that basal cells from primary human prostate tissue can initiate prostate cancer in immunocompromised mice. The cooperative effects of AKT, ERG, and androgen receptor in basal cells recapitulated the histological and molecular features of human prostate cancer, with loss of basal cells and expansion of luminal cells expressing prostate-specific antigen and alpha-methylacyl-CoA racemase. Our results demonstrate that histological characterization of cancers does not necessarily correlate with the cellular origins of the disease.

ARCHAEOLOGY

ART

ASIAN LANGUAGES & CULTURES

ART HISTORY

ART

COMMUNITY HEALTH SCIENCES

ECONOMICS

Jose I. Lopez: (Co-presenter) SED Meetings Society for Economic Dynamics, Montreal, Canada, June, 2010.

ELECTRICAL ENGINEERING

Erin Suzuki: “Haunted Hometowns: Negotiating Locality in Father of the Four Passages.” Published in Modern Fiction Studies 54 (Spring 2010), 160-182.

Miguel Lopez: “Building on Cultural Strengths as an Advocate for Underserved Students: Practical Implications for Information Studies.” Published in 2010 on a Cell-phone.” Published in

Paul C. Johnson: (1st author) “Distinguished Teaching Assistant Award.” Published in UCLA Graduate Student Information Studies, September, 2010.

Stanley L. Johnson Jr: (1st author) “Distinguished Teaching Assistant Award.” Published in UCLA Graduate Student Information Studies, September, 2010.

Thinking Gender is an annual public conference that features the best of current graduate student research on women, sexuality, and gender across all disciplines and historical periods. Moderated by faculty or professional scholars, the panels feature lively interchange and thoughtful discussion sessions. Thinking Gender features many student presenters from UCLA and the UC system as well as from around the country and the world. All the participants have the opportunity to interact and network with scholars from different institutions and these exchanges often lead to mentoring or continued collaboration.

This year’s conference will focus on such diverse topics as innovative research methodologies, epistemologies, human subjects, and power relations in academia; sustainability, food justice, food marketing, and disordered eating; and invented pathologies and the medicalization of sex. The plenary session will highlight current research on women and business.